'; ?> geneimprint : Hot off the Press http://www.geneimprint.com/site/hot-off-the-press Daily listing of the most recent articles in epigenetics and imprinting, collected from the PubMed database. en-us Thu, 08 Dec 2016 11:36:31 PST Thu, 08 Dec 2016 11:36:31 PST jirtle@radonc.duke.edu james001@jirtle.com Three intronic lncRNAs with monoallelic expression derived from the MEG8 gene in cattle. Yang W, Li D, Wang G, Zhang C, Zhang M, Zhang W, Li S
Anim Genet (Dec 2016)

The field of long noncoding RNA (lncRNA) research has been rapidly advancing in recent years. Antisense lncRNAs, intergenetic lncRNAs and enhancer lncRNAs can regulate genomic imprinting, which leads to parent-origin-specific monoalletic expression of genes. However, the function of intronic ncRNAs in genomic imprinting remains unclear. Previously, we obtained the cDNA sequence of cattle MEG8 gene, which is located in the DLK1-DIO3 imprinted clusters of cattle chromosome 21. In this study, we undertook a systematic search for transcripts mapping to the MEG8 intronic region and identified three novel lncRNAs, named MEG8 intronic RNA 1 (MEG8-IT1), MEG8 intronic RNA 2 (MEG8-IT2) and MEG8 intronic RNA 3 (MEG8-IT3) according to the GENCODE annotated bibliography. We characterized the expression pattern of these lncRNAs using RT-PCR in adult cattle tissues, and they were expressed in all tested eight tissues, similar to the expression pattern of MEG8. The allele-specific expression of three novel lncRNAs was assessed using a polymorphism-based sequencing approach. Three single nucleotide polymorphism sites were identified in these three lncRNAs. We found that the three lncRNAs showed monoallelic expression in the analyzed tissues, suggesting that they may be imprinted in cattle. These results expand the number of known monoallelically expressed lncRNAs from the DLK1-DIO3 domain and contribute to further investigation of lncRNA regulatory mechanisms and function.]]>
Wed, 07 Dec 2016 00:00:00 PST
DIVAN: accurate identification of non-coding disease-specific risk variants using multi-omics profiles. Chen L, Jin P, Qin ZS
Genome Biol (Dec 2016)

Understanding the link between non-coding sequence variants, identified in genome-wide association studies, and the pathophysiology of complex diseases remains challenging due to a lack of annotations in non-coding regions. To overcome this, we developed DIVAN, a novel feature selection and ensemble learning framework, which identifies disease-specific risk variants by leveraging a comprehensive collection of genome-wide epigenomic profiles across cell types and factors, along with other static genomic features. DIVAN accurately and robustly recognizes non-coding disease-specific risk variants under multiple testing scenarios; among all the features, histone marks, especially those marks associated with repressed chromatin, are often more informative than others.]]>
Wed, 07 Dec 2016 00:00:00 PST
A new model for parent-of-origin effect analyses applied to Brown Swiss cattle slaughterhouse data. Blunk I, Mayer M, Hamann H, Reinsch N
Animal (Dec 2016)

Genomic imprinting is a phenomenon that arises when the expression of genes depends on the parental origin of alleles. Epigenetic mechanisms may induce the full or partial suppression of maternal or paternal alleles, thereby leading to different types of imprinting. However, imprinting effects have received little consideration in animal breeding programmes, although their relevance to some agricultural important traits has been demonstrated. A recently proposed model (imprinting model) with two path-of-transmission (male and female)-specific breeding values for each animal accounts for all types of imprinting simultaneously (paternal, maternal, full and partial). Imprinting effects (or more generally: parent-of-origin effects (POE)) are determined by taking the difference between the two genetic effects in each animal. However, the computation of their prediction error variance (PEV) is laborious; thus, we propose a new model that is equivalent to the aforementioned imprinting model, which facilitates the direct estimation of imprinting effects instead of taking the differences and the PEV is readily obtained. We applied the new model to slaughterhouse data for Brown Swiss cattle, among which imprinting has never been investigated previously. Data were available for up to 173 051 fattening bulls, where the pedigrees contained up to 428 710 animals representing the entire Brown Swiss population of Austria and Germany. The traits analysed comprised the net BW gain, fat score, EUROP class and killing out percentage. The analysis demonstrated that the net BW gain, fat score and EUROP class were influenced significantly by POE. After estimating the POE, the new model yielded estimates with reliabilities ranging between 0.4 and 0.9. On average, the imprinting variances accounted for 9.6% of the total genetic variance, where the maternal gamete was the main contributor. Moreover, our results agreed well with those obtained using linear models when the EUROP class and fat score were treated as categorical traits by applying a GLMM with a logit link function.]]>
Tue, 06 Dec 2016 00:00:00 PST
Distinct and Shared Determinants of Cardiomyocyte Contractility in Multi-Lineage Competent Ethnically Diverse Human iPSCs. Tomov ML, Olmsted ZT, Dogan H, Gongorurler E, Tsompana M, Otu HH, Buck M, Chang EA, Cibelli J, Paluh JL
Sci Rep (Dec 2016)

The realization of personalized medicine through human induced pluripotent stem cell (iPSC) technology can be advanced by transcriptomics, epigenomics, and bioinformatics that inform on genetic pathways directing tissue development and function. When possible, population diversity should be included in new studies as resources become available. Previously we derived replicate iPSC lines of African American, Hispanic-Latino and Asian self-designated ethnically diverse (ED) origins with normal karyotype, verified teratoma formation, pluripotency biomarkers, and tri-lineage in vitro commitment. Here we perform bioinformatics of RNA-Seq and ChIP-seq pluripotency data sets for two replicate Asian and Hispanic-Latino ED-iPSC lines that reveal differences in generation of contractile cardiomyocytes but similar and robust differentiation to multiple neural, pancreatic, and smooth muscle cell types. We identify shared and distinct genes and contributing pathways in the replicate ED-iPSC lines to enhance our ability to understand how reprogramming to iPSC impacts genes and pathways contributing to cardiomyocyte contractility potential.]]>
Mon, 05 Dec 2016 00:00:00 PST
Chromatin landscapes and genetic risk in systemic lupus. Hui-Yuen JS, Zhu L, Wong LP, Jiang K, Chen Y, Liu T, Jarvis JN
Arthritis Res Ther (Dec 2016)

Systemic lupus erythematosus (SLE) is a multi-system, complex disease in which the environment interacts with inherited genes to produce broad phenotypes with inter-individual variability. Of 46 single nucleotide polymorphisms (SNPs) shown to confer genetic risk for SLE in recent genome-wide association studies, 30 lie within noncoding regions of the human genome. We therefore sought to identify and describe the functional elements (aside from genes) located within these regions of interest.]]>
Thu, 01 Dec 2016 00:00:00 PST
Deletion of conserved sequences in IG-DMR at Dlk1-Gtl2 locus suggests their involvement in expression of paternally expressed genes in mice. Saito T, Hara S, Tamano M, Asahara H, Takada S
J Reprod Dev (Dec 2016)

Expression regulation of the Dlk1-Dio3 imprinted domain by the intergenic differentially methylated region (IG-DMR) is essential for normal embryonic development in mammals. In this study, we investigated conserved IG-DMR genomic sequences in eutherians to elucidate their role in genomic imprinting of the Dlk1-Dio3 domain. Using a comparative genomics approach, we identified three highly conserved sequences in IG-DMR. To elucidate the functions of these sequences in vivo, we generated mutant mice lacking each of the identified highly conserved sequences using the CRISPR/Cas9 system. Although mutant mice did not exhibit the gross phenotype, deletions of the conserved sequences altered the expression levels of paternally expressed imprinted genes in the mutant embryos without skewing imprinting status. These results suggest that the conserved sequences in IG-DMR are involved in the expression regulation of some of the imprinted genes in the Dlk1-Dio3 domain.]]>
Thu, 01 Dec 2016 00:00:00 PST
A permissive chromatin state regulated by ZFP281-AFF3 in controlling the imprinted Meg3 polycistron. Wang Y, Shen Y, Dai Q, Yang Q, Zhang Y, Wang X, Xie W, Luo Z, Lin C
Nucleic Acids Res (Nov 2016)

Genomic imprinting is an epigenetic regulation that leads to gene expression in a parent-of-origin specific manner. AFF3, the central component of the Super Elongation Complex-like 3 (SEC-L3), is enriched at both the intergenic-differentially methylated region (IG-DMR) and the Meg3 enhancer within the imprinted Dlk1-Dio3 locus to regulate the allele-specific gene expression in this locus. The localization of AFF3 to IG-DMR requires ZFP57. However, how AFF3 functions at the Meg3 enhancer in maintaining allele-specific gene expression remains unclear. Here, we demonstrate that AFF3 is associated with the Krüppel-like zinc finger protein ZFP281 in mouse embryonic stem (ES) cells. ZFP281 recruits AFF3 to the Meg3 enhancer within the imprinted Dlk1-Dio3 locus, thus regulating the allele-specific expression of the Meg3 polycistron. Our genome-wide analyses further identify ZFP281 as a critical factor generally associating with AFF3 at enhancers and functioning together with AFF3 in regulating the expression of a subset of genes. Our study suggests that different zinc finger proteins can recruit AFF3 to different regulatory elements and differentially regulate the function of AFF3 in a context-dependent manner.]]>
Wed, 30 Nov 2016 00:00:00 PST
Whole genome DNA methylation: beyond genes silencing. Tirado-Magallanes R, Rebbani K, Lim R, Pradhan S, Benoukraf T
Oncotarget (Nov 2016)

The combination of DNA bisulfite treatment with high-throughput sequencing technologies has enabled investigation of genome-wide DNA methylation at near base pair level resolution, far beyond that of the kilobase-long canonical CpG islands that initially revealed the biological relevance of this covalent DNA modification. The latest high-resolution studies have revealed a role for very punctual DNA methylation in chromatin plasticity, gene regulation and splicing. Here, we aim to outline the major biological consequences of DNA methylation recently discovered. We also discuss the necessity of tuning DNA methylation resolution into an adequate scale to ease the integration of the methylome information with other chromatin features and transcription events such as gene expression, nucleosome positioning, transcription factors binding dynamic, gene splicing and genomic imprinting. Finally, our review sheds light on DNA methylation heterogeneity in cell population and the different approaches used for its assessment, including the contribution of single cell DNA analysis technology.]]>
Tue, 29 Nov 2016 00:00:00 PST
Exploring the molecular basis of age-related disease comorbidities using a multi-omics graphical model. Zierer J, Pallister T, Tsai PC, Krumsiek J, Bell JT, Lauc G, Spector TD, Menni C, Kastenmüller G
Sci Rep (Nov 2016)

Although association studies have unveiled numerous correlations of biochemical markers with age and age-related diseases, we still lack an understanding of their mutual dependencies. To find molecular pathways that underlie age-related diseases as well as their comorbidities, we integrated aging markers from four different high-throughput omics datasets, namely epigenomics, transcriptomics, glycomics and metabolomics, with a comprehensive set of disease phenotypes from 510 participants of the TwinsUK cohort. We used graphical random forests to assess conditional dependencies between omics markers and phenotypes while eliminating mediated associations. Applying this novel approach for multi-omics data integration yields a model consisting of seven modules that represent distinct aspects of aging. These modules are connected by hubs that potentially trigger comorbidities of age-related diseases. As an example, we identified urate as one of these key players mediating the comorbidity of renal disease with body composition and obesity. Body composition variables are in turn associated with inflammatory IgG markers, mediated by the expression of the hormone oxytocin. Thus, oxytocin potentially contributes to the development of chronic low-grade inflammation, which often accompanies obesity. Our multi-omics graphical model demonstrates the interconnectivity of age-related diseases and highlights molecular markers of the aging process that might drive disease comorbidities.]]>
Fri, 25 Nov 2016 00:00:00 PST
A Functional Variant Associated with Atrial Fibrillation Regulates PITX2c Expression through TFAP2a. Ye J, Tucker NR, Weng LC, Clauss S, Lubitz SA, Ellinor PT
Am J Hum Genet (Dec 2016)

The most significantly associated genetic locus for atrial fibrillation (AF) is in chromosomal region 4q25, where four independent association signals have been identified. Although model-system studies suggest that altered PITX2c expression might underlie the association, the link between specific variants and the direction of effect on gene expression remains unknown for all four signals. In the present study, we analyzed the AF-associated region most proximal to PITX2 at 4q25. First, we identified candidate regulatory variants that might confer AF risk through a combination of mammalian conservation, DNase hypersensitivity, and histone modification from ENCODE and the Roadmap Epigenomics Project, as well as through in vivo analysis of enhancer activity in embryonic zebrafish. Within candidate regions, we then identified a single associated SNP, rs2595104, which displayed dramatically reduced enhancer activity with the AF risk allele. CRISPR-Cas9-mediated deletion of the rs2595104 region and editing of the rs2595104 risk allele in human stem-cell-derived cardiomyocytes resulted in diminished PITX2c expression in comparison to that of the non-risk allele. This differential activity was mediated by activating enhancer binding protein 2 alpha (TFAP2a), which bound robustly to the non-risk allele at rs2595104, but not to the risk allele, in cardiomyocytes. In sum, we found that the AF-associated SNP rs2595104 altered PITX2c expression via interaction with TFAP2a. Such a pathway could ultimately contribute to AF susceptibility at the PITX2 locus associated with AF.]]>
Mon, 21 Nov 2016 00:00:00 PST
The International Human Epigenome Consortium Data Portal. Bujold D, Morais DA, Gauthier C, Côté C, Caron M, Kwan T, Chen KC, Laperle J, Markovits AN, Pastinen T, Caron B, Veilleux A, Jacques PÉ, Bourque G
Cell Syst (Nov 2016)

The International Human Epigenome Consortium (IHEC) coordinates the production of reference epigenome maps through the characterization of the regulome, methylome, and transcriptome from a wide range of tissues and cell types. To define conventions ensuring the compatibility of datasets and establish an infrastructure enabling data integration, analysis, and sharing, we developed the IHEC Data Portal (http://epigenomesportal.ca/ihec). The portal provides access to >7,000 reference epigenomic datasets, generated from >600 tissues, which have been contributed by seven international consortia: ENCODE, NIH Roadmap, CEEHRC, Blueprint, DEEP, AMED-CREST, and KNIH. The portal enhances the utility of these reference maps by facilitating the discovery, visualization, analysis, download, and sharing of epigenomics data. The IHEC Data Portal is the official source to navigate through IHEC datasets and represents a strategy for unifying the distributed data produced by international research consortia.]]>
Sat, 19 Nov 2016 00:00:00 PST
The BLUEPRINT Data Analysis Portal. Fernández JM, de la Torre V, Richardson D, Royo R, Puiggròs M, Moncunill V, Fragkogianni S, Clarke L,  , Flicek P, Rico D, Torrents D, Carrillo de Santa Pau E, Valencia A
Cell Syst (Nov 2016)

The impact of large and complex epigenomic datasets on biological insights or clinical applications is limited by the lack of accessibility by easy, intuitive, and fast tools. Here, we describe an epigenomics comparative cyber-infrastructure (EPICO), an open-access reference set of libraries to develop comparative epigenomic data portals. Using EPICO, large epigenome projects can make available their rich datasets to the community without requiring specific technical skills. As a first instance of EPICO, we implemented the BLUEPRINT Data Analysis Portal (BDAP). BDAP provides a desktop for the comparative analysis of epigenomes of hematopoietic cell types based on results, such as the position of epigenetic features, from basic analysis pipelines. The BDAP interface facilitates interactive exploration of genomic regions, genes, and pathways in the context of differentiation of hematopoietic lineages. This work represents initial steps toward broadly accessible integrative analysis of epigenomic data across international consortia. EPICO can be accessed at https://github.com/inab, and BDAP can be accessed at http://blueprint-data.bsc.es.]]>
Sat, 19 Nov 2016 00:00:00 PST
Pharmacoepigenetics: an element of personalized therapy? Majchrzak-Celińska A, Baer-Dubowska W
Expert Opin Drug Metab Toxicol (Nov 2016)

Epigenetics is a rapidly growing field describing heritable alterations in gene expression that do not involve DNA sequence variations. Advances in epigenetics and epigenomics have influenced pharmacology, leading to the development of a new specialty, pharmacoepigenetics, the study of the epigenetic basis for the individual variation in drug response. Areas covered: We present an overview of the major epigenetic mechanisms and their effects on the expression of drug metabolizing enzymes and drug transporters, as well as the epigenetic status of drug protein targets affecting therapy response. Recent advances in the development of pharmacoepigenetic biomarkers and epidrugs are also discussed. Expert opinion: There is growing evidence that pharmacoepigenetics has the potential to become an important element of personalized medicine. Epigenetic modifications influence drug response, but they can also be modulated by drugs. Moreover, they can be monitored not only in the affected tissue, but also in body fluids. Nevertheless, there are very few examples of epigenetic biomarkers implemented in the clinical setting. Explanation of the interplay between genomic and epigenomic changes will contribute to the personalized medicine approach. Ultimately, both genetic biomarkers and epigenetic mechanisms should be taken into consideration in predicting drug response in the course of successful personalized therapy.]]>
Fri, 18 Nov 2016 00:00:00 PST
ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing. Chen X, Shen Y, Draper W, Buenrostro JD, Litzenburger U, Cho SW, Satpathy AT, Carter AC, Ghosh RP, East-Seletsky A, Doudna JA, Greenleaf WJ, Liphardt JT, Chang HY
Nat Methods (Dec 2016)

Spatial organization of the genome plays a central role in gene expression, DNA replication, and repair. But current epigenomic approaches largely map DNA regulatory elements outside of the native context of the nucleus. Here we report assay of transposase-accessible chromatin with visualization (ATAC-see), a transposase-mediated imaging technology that employs direct imaging of the accessible genome in situ, cell sorting, and deep sequencing to reveal the identity of the imaged elements. ATAC-see revealed the cell-type-specific spatial organization of the accessible genome and the coordinated process of neutrophil chromatin extrusion, termed NETosis. Integration of ATAC-see with flow cytometry enables automated quantitation and prospective cell isolation as a function of chromatin accessibility, and it reveals a cell-cycle dependence of chromatin accessibility that is especially dynamic in G1 phase. The integration of imaging and epigenomics provides a general and scalable approach for deciphering the spatiotemporal architecture of gene control.]]>
Mon, 17 Oct 2016 00:00:00 PDT
Genomic imprinting, disrupted placental expression, and speciation. Brekke TD, Henry LA, Good JM
Evolution (Dec 2016)

The importance of regulatory incompatibilities to the early stages of speciation remains unclear. Hybrid mammals often show extreme parent-of-origin growth effects that are thought to be a consequence of disrupted genetic imprinting (parent-specific epigenetic gene silencing) during early development. Here, we test the long-standing hypothesis that abnormal hybrid growth reflects disrupted gene expression due to loss of imprinting (LOI) in hybrid placentas, resulting in dosage imbalances between paternal growth factors and maternal growth repressors. We analyzed placental gene expression in reciprocal dwarf hamster hybrids that show extreme parent-of-origin growth effects relative to their parental species. In massively enlarged hybrid placentas, we observed both extensive transgressive expression of growth-related genes and biallelic expression of many genes that were paternally silenced in normal sized hybrids. However, the apparent widespread disruption of paternal silencing was coupled with reduced gene expression levels overall. These patterns are contrary to the predictions of the LOI model and indicate that hybrid misexpression of dosage-sensitive genes is caused by other regulatory mechanisms in this system. Collectively, our results support a central role for disrupted gene expression and imprinting in the evolution of mammalian hybrid inviability, but call into question the generality of the widely invoked LOI model.]]>
Fri, 07 Oct 2016 00:00:00 PDT
Epigenomic engineering for Down syndrome. Mentis AF
Neurosci Biobehav Rev (Dec 2016)

Down syndrome (DS; trisomy 21), the commonest genetic cause of mental disability, affects approximately 250,000 families in the United States alone. Despite milestones in understanding the specific genetic causes of the syndrome, the major symptoms of DS - not least those related to neurocognitive function - are incurable. DS phenotypes are highly variable, and gene expression patterns cannot be explained by trisomy alone, implicating epigenetics in DS pathophysiology. DNA and histone modifications appear to contribute to DS pathology and cognitive defects, and epigenomic, and genome editing research have very recently opened up novel therapeutic avenues for several diseases including DS. Here, we discuss how epigenomic therapies might be used to ameliorate DS-related phenotypes with a particular focus on the CRISPR-Cas 9 system for targeted epigenomic engineering in DS. This approach is likely to reap rewards in terms of understanding the pathophysiology of DS, especially when combined with animal models, but significant technical and ethical challenges must be overcome for clinical translation.]]>
Fri, 30 Sep 2016 00:00:00 PDT
Parental Genome Imbalance Causes Post-Zygotic Seed Lethality and Deregulates Imprinting in Rice. Zhang HY, Luo M, Johnson SD, Zhu XW, Liu L, Huang F, Liu YT, Xu PZ, Wu XJ
Rice (N Y) (Dec 2016)

Reproductive isolation between rice of different ploidy levels is manifested as endosperm and embryo abortion in seeds produced by interploidy crosses. Genomic imprinting is considered to be the underlying mechanism establishing the post-zygotic hybridization barrier. We characterized disrupted seed development in reciprocal crosses between a diploid Japonica rice and a tetraploid Indica rice.]]>
Mon, 29 Aug 2016 00:00:00 PDT
ATP-binding cassette transmembrane transporters and their epigenetic control in cancer: an overview. Arrigoni E, Galimberti S, Petrini M, Danesi R, Di Paolo A
Expert Opin Drug Metab Toxicol (Dec 2016)

Members of the ATP-binding cassette (ABC) transmembrane transporters control the passage of several substrates across cell membranes, including drugs. This means that ABC transporters may exert a significant influence on the kinetics and dynamics of pharmacological agents, being responsible for the occurrence of multidrug-resistant (MDR) phenotype. Pharmacogenetic analyses have shed light on gene expression and polymorphisms as possible markers predictive of transporter activity. However, a non-negligible part of the variability in drug pharmacokinetics and pharmacodynamics still remains. Further research has demonstrated that different epigenetic mechanisms exert a coordinated control over ABC genes, and on the corresponding MDR phenotype. Areas covered: DNA methylation and histone modifications (namely acetylation, methylation, phosphorylation, etc.) significantly impact gene expression, as well as noncoding RNA molecules that are involved in the post-transcriptional control of the ABC transporters ABCB1, ABCC1 and ABCG2. We describe the epigenetic mechanisms of gene expression control for ABC transporters and their relevant association with the MDR phenotype in human cancer. Expert opinion: The clinical meaning of those observations is discussed in the review, highlighting the importance of the epigenetic control of the ABC transporters for the clinical therapeutic outcomes that despite their effects and applications, requires further investigation.]]>
Wed, 03 Aug 2016 00:00:00 PDT
Methylation Status of H19/IGF2 Differentially Methylated Region in in vitro Human Blastocysts Donated by Healthy Couples. Derakhshan-Horeh M, Abolhassani F, Jafarpour F, Moini A, Karbalaie Kh, Hosseini SM, Ostadhosseini S, Nasr-Esfahani MH
Iran Biomed J (Jan 2017)

Imprinted genes are a unique subset of few genes that have been differentially methylated region (DMR) in a parental origin-dependent manner during gametogenesis, and these genes are highly protected during pre-implantation epigenetic reprogramming. Several studies have shown that the particular vulnerability of imprinting genes during suboptimal pre- and peri-conception micro-environments often is occurred by assisted reproduction techniques (ART). This study investigated the methylation status of H19/IGF2 DMR at high-quality expanding/expanded human blastocysts donated by healthy individuals to evaluate the risks linked to ART.]]>
Sun, 24 Jul 2016 00:00:00 PDT
Plasma Amyloid Beta 1-42 and DNA Methylation Pattern Predict Accelerated Aging in Young Subjects with Down Syndrome. Obeid R, Hübner U, Bodis M, Geisel J
Neuromolecular Med (Dec 2016)

Gene methylation is an age-related dynamic process that influences diseases. Premature aging and disturbed methylation are components of Down syndrome (DS). We studied blood biomarkers and DNA methylation (DNAm) of three CpG sites (ASPA, ITGA2B, and PDE4C) in 60 elderly subjects (mean age = 68 years), 31 subjects with DS (12.1 years) and 44 controls (12.8 years). Plasma concentrations of amyloid beta (Aβ) 1-42 and biomarkers of methylation were measured in the young groups. Subjects with DS had significantly higher concentrations of plasma S-adenosylhomocysteine (SAH) and Aβ and reduced S-adenosylmethionine/SAH ratio compared with the controls. Methylations (%) of ASPA and ITGA2B were lower in DS [mean difference; 95 % confidence intervals = -2.2 (-4.5, 0.1) for ASPA and -5.0 (-8.9, -1.1) for ITGA2B]. Methylation of PDE4C did not differ between the groups. The sum of z-scores for methylations of ASPA and ITGA2B, both of which declined with age, was significantly lower in DS [-1.01 (-1.93, -0.20), p = 0.017]. Subjects with DS were found to be 3.1 (1.5-4.6) years older than their predicted age based on a regression model of the controls. Elevated SAH levels predicted lower DNAm of ASPA and ITGA2B in stepwise regression analysis. Therefore, methylation of three CpGs combined with plasma Aβ has shown a 3-year accelerated aging in subjects with DS at the age of 12 years. Disorders in the methylation cycle explained pathoepigenetic modifications in subjects with DS. The influence of modifications in the methylation cycle on epigenetic markers of aging warrants further investigations.]]>
Sat, 28 May 2016 00:00:00 PDT